Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli.

نویسندگان

  • Dan Coursolle
  • Jiazhang Lian
  • John Shanklin
  • Huimin Zhao
چکیده

Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products in BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg L(-1) long chain alcohol/alkane products including a 57 mg L(-1) titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases

BACKGROUND Biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based alkanes. Acyl-[acyl carrier protein (ACP)] reductase (AAR) is a key enzyme for alkane biosynthesis in cyanobacteria and catalyzes the reduction of fatty acyl-ACP to fatty aldehydes, which are then converted into alkanes/alkenes by aldehyde-deformylating oxygenase (ADO). The amino acid sequences ...

متن کامل

Improved production of fatty alcohols in cyanobacteria by metabolic engineering

BACKGROUND Fatty alcohols are widely used in industrial chemicals. The biosynthetic pathways for fatty alcohols are diverse and widely existing in nature. They display a high capacity to produce fatty alcohols by the metabolic engineering of different microbe hosts. Direct recycling of carbon dioxide to fatty alcohols can be achieved by introducing a fatty alcohol-producing pathway into photosy...

متن کامل

Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE,...

متن کامل

Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length

BACKGROUND Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. RESULTS Based on the crystal...

متن کامل

Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria.

The first condensation reaction in the fatty acid biosynthetic pathway in Escherichia coli was rate-limiting as judged by analysis of the relative pool sizes of acyl carrier protein (ACP) thioester intermediates in vivo. Comparable concentrations of acetyl-ACP, malonyl-ACP, and nonesterified ACP were present during logarithmic growth, whereas long-chain acyl-ACP comprised a minor fraction of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2015